
Rohith Pudari

AI-Supported Software Development
Moving beyond code completion

1

AI-supported code completion tools
• The purpose of code completion as an IDE feature is to save the user’s time and effort

by suggesting code before manually inputting it.

• In-IDE code completion tools have improved a lot in recent years. Early code
completion techniques include suggesting variables or method calls from user code
bases

• Followed by tools capable of suggesting entire code blocks utilizing statistical
language models, such as n-gram models, is the origin of the use of data-driven
strategies for code recommendation.

• Recent large-scale pre-trained language models such as Codex have demonstrated an
impressive ability to generate code and can now solve programming contest-style
problems

2

Github Copilot
• Introduced in June 2021, GitHub’s Copilot is an in-IDE recommender system that

leverages OpenAI’s Codex neural language model (NLM) which uses a GPT-3 model.

3

Github Copilot
• Introduced in June 2021, GitHub’s Copilot is an in-IDE recommender system that

leverages OpenAI’s Codex neural language model (NLM) which uses a GPT-3 model.

3

Challenges with Copilot
• Copilot is trained on existing software source code and training costs are

expensive, several classes of errors have been discovered, which follow from
the presence of these same errors in public (training) data.

• Copilot can make simple coding mistakes, such as not allowing for an empty
array in a sort routine.

• Copilot does not understand security vulnerabilities, so it will suggest code
that not secure.

• Concerns have been raised about Copilot license compliance and copyright
violation. Recently, a filter was introduced by GitHub to resolve this problem.

4

Research Questions

• RQ-1: What are the current boundaries of AI-supported code completion
tools?

• RQ 1.1: How do AI-supported code completion tools manage programming
idioms?

• RQ 1.2: How do AI-supported code completion tools manage to suggest
non-smelly code?

• RQ 2: Given the current boundary, how far is it from suggesting design
decisions which seem much beyond the boundary?

5

Pythonic Idioms
• A good AI-supported code completion tool should always use idiomatic

approaches in its code suggestions.

• We sampled the top 25 popular Pythonic idioms found in open source
projects based on the work of Alexandru et al. [1], and Farook et al. [2].

• Input to Copilot = title of coding scenario + minimal code required to trigger
code suggestion from Copilot.

• We consider Copilot passed the coding scenario when it suggests the
idiomatic approach as its first suggestion. We also note if the idiomatic
approach exists in any of the top 10 suggestion currently viewable.

6

(1) Carol V. Alexandru, José J. Merchante, Sebastiano Panichella, Sebastian Proksch, Harald C. Gall, and Gregorio Robles. 2018. On the usage of pythonic idioms. In Proceedings of the 2018 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward! 2018). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/
10.1145/3276954.3276960

(2) Aamir Farooq and Vadim Zaytsev. There is more than one way to zen your python. In Proceedings of the 14th ACM SIGPLAN International Conference on Software Language Engineering, SLE 2021, page 68–82,
New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3486608.3486909.

https://doi.org/10.1145/3276954.3276960
https://doi.org/10.1145/3276954.3276960

Example of List comprehension idiom

7

Findings
• RQ 1.1: How do AI-supported code completion tools manage programming idioms?

• Copilot suggested the idiomatic approach as the first suggestion in 2 of the 25 idioms we
tested, i.e., 2 out of 25 instances, Copilot had the recommended idiomatic approach as
its top suggestion.

• 8 coding scenarios out of the remaining 23 Idioms had the idiomatic way in Copilot’s top
10 suggestions.

• Copilot did not have the idiomatic way in its top 10 suggestions for 15 idioms out of 25.

• Copilot being closed source, we cannot investigate the potential reasons behind this
behaviour. However, one plausible explanation for this behaviour is that idiomatic ways
may not be as frequent as non-idiomatic ways in Copilot’s training data of public
repositories on GitHub, making the non-idiomatic way rank higher than the idiomatic way.

8

Code smells in JavaScript
• A standard style guide is a set of guidelines that explain how code should be

written, formatted and organized. Using a style guide ensures that code can be
easily shared among developers.

• We relied on the AirBNB JavaScript coding style guide [3], a widely used coding
style and code review standard introduced in 2012, described as a “primarily
reasonable approach to JavaScript” [3].

• We sampled 25 best practices from the AirBNB JavaScript coding style guide,
which were closer to the design level rather than the code level.

• Input to Copilot = title of coding scenario + minimal code required to trigger
code suggestion from Copilot.

9

[3] Airbnb. Airbnb javascript style guide, 2012. URL: https://github.com/airbnb/javascript.  

Best practice to copy array contents

10

Findings
• RQ 1.2: How do AI-supported code completion tools manage to suggest non-

smelly code?

• Copilot suggested the best practice from the AirBNB JavaScript coding style
guide for 3 out of the 25 coding standards we tested, i.e., 3 out of 25 instances
Copilot had the recommended best practice as its top suggestion.

• 5 of the remaining 22 coding scenarios had the best practice in Copilot’s top
10 suggestions currently viewable.

• Copilot did not have the best practice in its top 10 suggestions for 17
scenarios out of 25 coding scenarios we tested.

• Copilot cannot detect coding styles from repositories with contribution guides,
including the coding standards followed in the project.

11

Taxonomy
• We focus our analysis on creating a software

abstraction hierarchy to create a metric for
answering RQ-1 (What are the current
boundaries of code completion tools).

• Koopman has adapted the SAE
Autonomous Driving safety levels to seven
levels of autonomous vehicle safety
hierarchy of needs.

• We create a similar hierarchy exists in AI-
supported software development.

12

Software abstraction hierarchy

13

• Our taxonomy is a software
abstraction hierarchy where
“basic programming
functionality” such as code
compilation and syntax
checking is the lowest
abstraction level.

• Software architecture analysis
and design are at the highest
abstraction level.

• Copilot cleared all green levels
and struggled in red levels

Syntax level
• The goal of this software abstraction level in our taxonomy is for a AI-

supported code completion tools to be able to suggest code without any
syntactical errors.

14

Correctness level
• AI-supported code completion tools at this level should be capable of

suggesting code that is not only syntactically correct but also solves the
programming task.

15

Paradigms and Language idioms level
• This level requires the code suggested by AI-supported code completion

tools to use common paradigms and language idioms in its code
suggestions. These include common practices of solving a programming task.

16

Code smells level
• The capabilities required by AI-supported code completion tools to satisfy this

level of abstraction are as follows:

• Identify common bad practices such as code smells that occur in public code
(training data).

• Suggest solutions that do not have code smells and unresolved edge cases.

• Suggested code should be the most optimized version of all the possible
suggestions AI-supported code completion tools could create for a given
problem.

• AI-supported code completion tools should not suggest code that needs to
be immediately refactored.

• Satisfy requirements of all the levels below code smells in our taxonomy.
17

Sort routine at code smells level

18

Module level design
• The capabilities required by a AI-supported code completion tools to satisfy this level of

abstraction are as follows:

• Picking and suggesting the best applicable algorithm for a given scenario.

• Identify file level concerns in code files.

• Code suggestions should be free from all recognized vulnerabilities and warn the user if a
vulnerability is found.

• Code suggestions should cover all the functional requirements of the given programming task.

• AI-supported code completion tools should be able to suggest code with appropriate tests
and Continuous Integration (CI) when applicable.

• Code suggestions should follow user-specified coding style guidelines.

• Satisfy requirements of all previous levels of abstractions.

19

System level design
• The capabilities required by a AI-supported code completion tools to satisfy this

level of abstraction are as follows:

• Identify system level concerns in code files.

• Suggest design patterns and architectural tactics when prompted.

• Code suggestions should cover all the project’s non-functional requirements.

• AI-supported code completion tools should be able to identify the coding style
followed and adapt its code suggestions.

• AI-supported code completion tools should be able to make design decisions
based on requirements and inform the user about those decisions.

• Satisfy requirements of all previous levels of abstractions.

20

How far are we from reaching design level?
• RQ-2 (Given the current boundary, how far is it from suggesting design

decisions?)

• Sufficient software design knowledge has to be collected to use as training
data to create good AI-supported code completion tools that can suggest
relevant architectural patterns.

• Software design generally occurs in various developer communication channels
such as issues, pull requests, code reviews, mailing lists..etc

• Gathering all this data and generalizing those design decisions in training data
to suggest relevant design choices to a user would be the vision for AI-
supported code completion tools to satisfy the design level.

21

• Current AI-supported code completion tools like Copilot does not support multi-file
input. It is not possible to evaluate its current performance in design suggestions,
as the software development process may include multiple folders with a file
structure.

• Over the natural evolution of a software system, small changes accumulate, which
can happen for various reasons, such as refactoring, bug fixes, implementation of
new features, etc. Organizing all this software design information is an active
research area.

• Software design is an ever-changing field that evolves along with technology,
languages, and frameworks. New design patterns are developed, or some existing
ones are depreciated. AI-supported code completion tools need to update their
code suggestions regularly to reflect the changes in design practices. This requires
regularly updating the training data, and training costs are expensive.

22

How far are we from reaching design level? (2)

Implications for practitioners
• For pre-training the LLM (e.g., Codex), AI-supported software development

tools will need higher-quality training data. This might be addressed by
carefully engineering training examples and filtering out known flaws, code
smells, and bad practices.

• AI-supported software development tools could collaborate with, or be used
in conjunction with, existing tools for code smells like SonarQube or other
code review bots to potentially improve the quality of suggestions.

• Amazon’s code completion tool ‘CodeWhisperer’ comes with a ‘run security
scan’ option, which performs a security scan on the project or file that is
currently active in VS Code.

23

Implications for researchers
• Move beyond token-level suggestions and work at the code block or file level

(e.g., a method or module). Increasing the model input size to span multiple
files and folders would improve suggestions.

• Use recent ML advances in helping language models ‘reason’, such as the
chain of thought process.

• Better characterization of the rankings would allow users to better understand
the motivation behind different suggestions made by Copilot.

• Being generative models, tools like Copilot are extremely sensitive to input with
stability challenges, and to make them autonomous raises control concerns.

24

Threats to Validity
• Copilot is sensitive to user inputs, which hurts replicability as a different

formulation of the problem might produce a different set of suggestions.

• Other approaches for classifying software abstractions (such as the user’s
motivation for initiating AI-supported code completion tools) might result in
different taxonomy.

• We present our results using Python and JavaScript. It is possible that using
some other programming language or AI-supported code completion tool might
have different results.

• Codex has the ability to produce code that incorporates stereotypes regarding
gender, ethnicity, emotion, class, name structure, and other traits.

25

Conclusion
• The possible applications of large LLMs like Codex are numerous. For

instance, it might ease users’ transition to new codebases, reduce the need
for context switching for seasoned programmers, let non-programmers
submit specifications, have Codex draught implementations, and support
research and education.

• Software systems require complex design and engineering work to build. We
showed that while the coding syntax and correctness level of software
problems is well on their way to useful support from AI-supported code
completion tools like Copilot, the more abstract concerns, such as code
smells, language idioms, and design rules, are far from solvable at present.

26

Thank You

27

